
solving the integral of $e^ {x^2}$ - Mathematics Stack Exchange
The integral which you describe has no closed form which is to say that it cannot be expressed in elementary functions. For example, you can express $\int x^2 \mathrm {d}x$ in elementary …
What is the integral of 1/x? - Mathematics Stack Exchange
Answers to the question of the integral of $\frac {1} {x}$ are all based on an implicit assumption that the upper and lower limits of the integral are both positive real numbers.
calculus - How to deal with multiplication inside of integral ...
How to deal with multiplication inside of integral? Ask Question Asked 13 years, 9 months ago Modified 7 years, 10 months ago
calculus - Is there really no way to integrate $e^ {-x^2 ...
@user599310, I am going to attempt some pseudo math to show it: $$ I^2 = \int e^-x^2 dx \times \int e^-x^2 dx = Area \times Area = Area^2$$ We can replace one x, with a dummy variable, …
How to calculate the integral in normal distribution?
If by integral you mean the cumulative distribution function $\Phi (x)$ mentioned in the comments by the OP, then your assertion is incorrect.
What is the integral of 0? - Mathematics Stack Exchange
Feb 4, 2018 · The integral of 0 is C, because the derivative of C is zero. Also, it makes sense logically if you recall the fact that the derivative of the function is the function's slope, because …
What is $dx$ in integration? - Mathematics Stack Exchange
The symbol used for integration, $\int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $\int_a^b f (x) dx = \lim_ {\Delta x \to 0} \sum_ {x=a}^ {b} f …
calculus - Is intergration and an integral the same thing ...
Aug 20, 2014 · The integral is also known (less commonly) as the anti-derivative, because integration is the inverse of differentiation (loosely speaking). Integrals are indefinite when …
How do I integrate $\\sec(x)$? - Mathematics Stack Exchange
Sep 27, 2013 · My HW asks me to integrate $\sin (x)$, $\cos (x)$, $\tan (x)$, but when I get to $\sec (x)$, I'm stuck.
calculus - Leibniz rule derivation - Mathematics Stack Exchange
Feb 9, 2020 · See the section of https://en.wikipedia.org/wiki/Leibniz_integral_rule that talks about the DCT. I am trying to understand what's the relationship between the DCT and the Leibniz …